Some time ago I published a couple of posts about the clocks Pendulum, firstly a Simple Pendulum and then another post about the more complex Compound pendulum.
This time however it's time to look at the construction of the Pendulum and how it interacts with the rest of the clock. The following are all based on the construction of the simple Pendulum but they can also be read as applying to the Compound pendulum as well.
However depending on the materials used this will end up wearing quite quickly so some harder material than wood should ideally be used, for instance, Brass works quite well.
Moving to the Bottom of the Pendulum there are quite a few variations on the construction that I have developed over the years. The first of these shown here to the left is the use of an adjusting nut. You can see that at the very bottom of the wooden rod the material has changed to Brass and a threaded section added to the end. The Pendulum Bob is slid onto the bottom of the pendulum and then followed by an adjusting nut, the effective length of the pendulum can now be adjusted by turning the nut so that it moves upward to make the clock run quicker or downwards to make it slower. The reasoning behind these adjustments is discussed in the earlier article on the Simple Pendulum. The use of the adjusting nut makes it a lot easier to accurately adjust the rate of the clock because very small movements can be accurately made to the effective length of the pendulum. The disadvantage is that the construction is more difficult because of the joining of the two parts of the Rod together although drilling the ends of the parts and pinning them together can make it easier.
I have not mentioned the shape of the pendulum Bob but to all intents and purposes it doesn't matter as you can have any shape you like. I generally either use a Brass rod cut to a length, the same as in the illustration above showing the back of the clock. Alternatly a disc shape like shown above left.
Moving on, the first of the alternative methods of constructing the Pendulum Bob is shown below. This method requires that a rectangular slot is cut through the centre of the Bob and then a Lock component fitted into it. This Lock component has a hole at its inner end that is slightly offset from the centre of the Pendulum Rod passing through it. The outside end of the Lock is shaped like a bow, so by pressing in the centre of the bow the hole in the other end can be aligned with the Pendulum Rod to allow it to pass through. When pressure is released from the bow the hole is pulled against the rod locking it in place. In this way, the Bob can be slid up or down by pressing the bow as you move the Bob. Adjustment is not so accurate as with the threaded nut but it is easier to construct and gives a lot more adjustment movement. The weights added to this Pendulum Bob design give the Pendulum a little more momentum to overcome any small glitches in the gear train driving the movement of the clock.
Another version of this concept is shown below it has the Lock moving from the side and the actual locking is made using a small metal spring. The advantage of this is that adjustments can be made more easily without putting your hand behind the pendulum.
No comments:
Post a Comment